843 research outputs found

    Experimental Signatures of Critically Balanced Turbulence in MAST

    Full text link
    Beam Emission Spectroscopy (BES) measurements of ion-scale density fluctuations in the MAST tokamak are used to show that the turbulence correlation time, the drift time associated with ion temperature or density gradients, the particle (ion) streaming time along the magnetic field and the magnetic drift time are consistently comparable, suggesting a "critically balanced" turbulence determined by the local equilibrium. The resulting scalings of the poloidal and radial correlation lengths are derived and tested. The nonlinear time inferred from the density fluctuations is longer than the other times; its ratio to the correlation time scales as ν∗i−0.8±0.1\nu_{*i}^{-0.8\pm0.1}, where ν∗i=\nu_{*i}= ion collision rate/streaming rate. This is consistent with turbulent decorrelation being controlled by a zonal component, invisible to the BES, with an amplitude exceeding the drift waves' by ∼ν∗i−0.8\sim \nu_{*i}^{-0.8}.Comment: 6 pages, 4 figures, submitted to PR

    Sensory navigation device for blind people

    Full text link
    [EN] This paper presents a new Electronic Travel Aid (ETA) 'Acoustic Prototype' which is especially suited to facilitate the navigation of visually impaired users. The device consists of a set of 3-Dimensional Complementary Metal Oxide Semiconductor (3-D CMOS) image sensors based on the three-dimensional integration and Complementary Metal-Oxide Semiconductor (CMOS) processing techniques implemented into a pair of glasses, stereo headphones as well as a Field-Programmable Gate Array (FPGA) used as processing unit. The device is intended to be used as a complementary device to navigation through both open known and unknown environments. The FPGA and the 3D-CMOS image sensor electronics control object detection. Distance measurement is achieved by using chip-integrated technology based on the Multiple Short Time Integration method. The processed information of the object distance is presented to the user via acoustic sounds through stereophonic headphones. The user interprets the information as an acoustic image of the surrounding environment. The Acoustic Prototype transforms the surface of the objects of the real environment into acoustical sounds. The method used is similar to a bat's acoustic orientation. Having good hearing ability, with few weeks training the users are able to perceive not only the presence of an object but also the object form (that is, if the object is round, if it has corners, if it is a car or a box, if it is a cardboard object or if it is an iron or cement object, a tree, a person, a static or moving object). The information is continuously delivered to the user in a few nanoseconds until the device is shut down, helping the end user to perceive the information in real time.The first author would like to acknowledge that this research was funded through the FP6 European project CASBLiP number 027063 and Project number 2062 of the Programa de Apoyo a la Investigacion y Desarrollo 2011 from the Universitat Politecnica de Valencia.Dunai, L.; Peris Fajarnes, G.; Lluna Gil, E.; Defez Garcia, B. (2013). Sensory navigation device for blind people. Journal of Navigation. 66(3):346-362. doi:10.1017/S0373463312000574S34636266

    Velocity vector (3D) measurement for spherical objects using an electro-optical device

    Full text link
    The present paper describes a procedure to measure the velocity vector (3D) of a spherical object using an electro-optical device configured as a single large detection area optical barrier. The proposed procedure allows a measurement accuracy up to 0.1% in some cases and presents several advantages in relation to other measurement procedures like image processing, doppler-radar and some other electro-optical devices. The procedure is independent of the relative position of the measurement device in relation to the object trajectory. The fact of using a single optical barrier reduces the space required in the movement direction and increase the cases where the device can be used. A prototype has been built and tested.Lluna Gil, E.; Santiago-Praderas, V.; Defez Garcia, B.; Dunai, L.; Peris Fajarnes, G. (2011). Velocity vector (3D) measurement for spherical objects using an electro-optical device. Measurement. 44(9):1723-1729. doi:10.1016/j.measurement.2011.07.006S1723172944

    Measurement and physical interpretation of the mean motion of turbulent density patterns detected by the BES system on MAST

    Full text link
    The mean motion of turbulent patterns detected by a two-dimensional (2D) beam emission spectroscopy (BES) diagnostic on the Mega Amp Spherical Tokamak (MAST) is determined using a cross-correlation time delay (CCTD) method. Statistical reliability of the method is studied by means of synthetic data analysis. The experimental measurements on MAST indicate that the apparent mean poloidal motion of the turbulent density patterns in the lab frame arises because the longest correlation direction of the patterns (parallel to the local background magnetic fields) is not parallel to the direction of the fastest mean plasma flows (usually toroidal when strong neutral beam injection is present). The experimental measurements are consistent with the mean motion of plasma being toroidal. The sum of all other contributions (mean poloidal plasma flow, phase velocity of the density patterns in the plasma frame, non-linear effects, etc.) to the apparent mean poloidal velocity of the density patterns is found to be negligible. These results hold in all investigated L-mode, H-mode and internal transport barrier (ITB) discharges. The one exception is a high-poloidal-beta (the ratio of the plasma pressure to the poloidal magnetic field energy density) discharge, where a large magnetic island exists. In this case BES detects very little motion. This effect is currently theoretically unexplained.Comment: 28 pages, 15 figures, submitted to PPC

    Impact of CaSO4-rich soil on Miocene surface preservation and Quaternary sinuous to meandering channel forms in the hyperarid Atacama Desert

    Get PDF
    The Atacama Desert is the driest and oldest desert on Earth. Despite the abundance evidence for long-term landscape stability, there are subtle signs of localised fluvial erosion and deposition since the onset of hyperaridity in the rock record. In the dry core of the Atacama Desert, pluvial episodes allowed antecedent drainage to incise into uplifting fault scarps, which in turn generated sinuous to meandering channels. Incision of ancient alluvial fan surfaces occurred during intermittent fluvial periods, albeit without signs of surface erosion. Fluvial incision during predominantly hyperarid climate periods is evident from these channels in unconsolidated alluvium. The absence of dense vegetation to provide bank stability and strength led us to investigate the potential role of regionally ubiquitous CaSO4-rich surface cover. This has enabled the preservation of Miocene surfaces and we hypothesize that it provided the required bank stability by adding strength to the upper decimetre to meter of incised alluvium to allow high sinuosity of stream channels to form during pluvial episodes in the Quaternary

    A 68 ka precipitation record from the hyperarid core of the Atacama Desert in northern Chile

    Get PDF
    [Abstract] The Atacama Desert in northern Chile is one of the driest deserts on Earth. Hyperaridity persists at least since the Miocene and was punctuated by pluvial phases. However, very little is known about the timing, regional spread and intensities of precipitation changes. Here, we present a new precipitation record from a sedimentary sequence recovered in a tectonically blocked endorheic basin that is located in the hyperarid core of the Atacama Desert. The chronostratigraphic framework of the record is given by a multi-disciplinary dating approach, suggesting an age of ca. 68 ka BP for the core base. The sequence consists of three sediment types, whose sedimentological and geochemical characteristics suggest different depositional processes that reflect different degrees in humidity. First, particularly fine-grained sediments with high clastic but low calcium sulfate and carbonate contents reflect a particularly dry climate with only sporadic precipitation events and fluvial supply via channel systems. Second, more coarse-grained sediments with lower clastic and higher calcium sulfate and carbonate contents reflect more moist conditions with stronger precipitation events that lead to fluvial activity not restricted to the channels but involving the slopes and plains in the catchment. Third, normally graded layers with an equally high proportion of calcium sulfate and carbonate reflect occasional high-precipitation events that caused sediment supply also from most distant parts of the catchment via severe flash floods. The sedimentary succession suggests that precipitation changes took place on orbital but also on millennial time scales. Rather moist periods occurred during most of MIS 2, several shorter periods within MIS 3 and parts of MIS 4. Comparison of the findings from the Huara record with selected climate records from continental and marine sites in South America suggests a strong precipitation heterogeneity across the Atacama. This heterogeneity is caused by pronounced differences in the dominating climate patterns and a shift from predominant summer rain in the north to winter rain in the south. Precipitation supply to the Huara clay plan is controlled by the atmospheric circulation rather than the surface temperature of the adjacent ocean
    • …
    corecore